Interbilayer-Crosslinked Multilamellar Vesicles as Synthetic Vaccines for Potent Humoral and Cellular Immune Responses

نویسندگان

  • James J. Moon
  • Heikyung Suh
  • Anna Bershteyn
  • Matthias T. Stephan
  • Haipeng Liu
  • Bonnie Huang
  • Mashaal Sohail
  • Samantha Luo
  • Soong Ho Um
  • Htet Khant
  • Jessica T. Goodwin
  • Jenelyn Ramos
  • Wah Chiu
  • Darrell J. Irvine
چکیده

Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8(+) T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8(+) T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses

Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer,...

متن کامل

Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination.

Many pathogens infiltrate the body and initiate infection via mucosal surfaces. Hence, eliciting cellular immune responses at mucosal portals of entry is of great interest for vaccine development against mucosal pathogens. We describe a pulmonary vaccination strategy combining Toll-like receptor (TLR) agonists with antigen-carrying lipid nanocapsules [interbilayer-crosslinked multilamellar vesi...

متن کامل

Immunization with Synthetic Nanoparticles to Generate Mucosal CD 8 T Cell Responses

Vaccines have benefited global health by controlling or eradicating life threatening diseases. With better understanding of infectious diseases and immunity, more interest has been placed on stimulating mucosal immune responses with vaccines as mucosal surfaces function as a first line of defense against infections. Progress made in nanoparticle research, in particular the successful use of lip...

متن کامل

Truncated Core/NS3 Fusion Protein of HCV Adjuvanted with Outer Membrane Vesicles of Neisseria meningitidis Serogroup B: Potent Inducer of the Murine Immune System

Background: A licensed vaccine against hepatitis C virus (HCV) has not become available to date. The stability and antigenicity of a targeted synthesized recombinant fusion protein consisting of a truncated core and NS3 (rC/N) of HCV had been predicted. Although safe antigens, recombinant proteins are not efficacious vaccines without adjuvants. The present study evaluated the immunogenicity of ...

متن کامل

Effect of IL-2 co-expressed or co-inoculated with immuno-dominant epitopes from VP1 protein of FMD virus on immune responses in BALB/c mice

Objective(s): The results of studies on vaccine development for foot-and-mouth disease (FMD) virus show that the use of inactivated vaccines for FMD virus is not completely effective. Novel vaccinations based on immuno-dominant epitopes have been shown to induce immune responses. Furthermore, for safety of immunization, access to efficient adjuvants against FMD virus seems to be critical.Materi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2011